A Statistical Arima Model to Predict Arctic Environment for NSR Shipping
Paper i proceeding, 2021

Safe and energy-efficient ship navigation along the Northern Sea Route (NSR) requires reliable sea ice concentration (SIC) information. However, the SIC forecast used to assist NSR shipping is often inaccurate. This study proposes a statistical interpolation method to reduce the errors induced by the traditional nearest grid point interpolation method. An auto-regressive integrated moving average (ARIMA) model is developed based on ERA5 reanalysis data. The ARIMA model can be used for short-term SIC forecasts along the NSR. Model validation has been conducted to compare the SIC forecast with ensemble experiments from the Coupled Model Intercomparison Project Phase 5 (CMIP5), achieving good agreements. The route availability is estimated according to the SIC forecast. The results indicate that the specified NSR will be open for shipping from 2021 to 2025. The work also indicates the feasibility of the proposed statistical models to assist NSR shipping management.

time series analysis

ARIMA model

Sea ice concentration

Arctic shipping

Författare

Da Wu

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Xiao Lang

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Di Zhang

Wuhan University of Technology

Leif Eriksson

Geovetenskap och fjärranalys

Wengang Mao

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Vol. 7
9780791885178 (ISBN)

40th International Conference on Ocean, Offshore & Arctic Engineering
Virtual, ,

EcoSail - Miljövänlig och kunddriven Sailplan optimeringstjänst

Europeiska kommissionen (EU) (EC/H2020/820593), 2018-11-01 -- 2021-04-30.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Ämneskategorier (SSIF 2011)

Oceanografi, hydrologi, vattenresurser

Sannolikhetsteori och statistik

Datavetenskap (datalogi)

Annan elektroteknik och elektronik

DOI

10.1115/OMAE2021-62783

Mer information

Senast uppdaterat

2024-08-01