Stochastic Model Predictive Energy Management of Electric Trucks in Connected Traffic
Artikel i vetenskaplig tidskrift, 2023

This paper proposes a cost-effective power management strategy utilizing the data provided by V2I communication techniques for dual electric machine coupling propulsion trucks. We formulate a bilevel program where the high-level optimizes operation mode implicitly, while the low-level computes an explicit policy for power distribution of two electric machines. Stochastic model predictive control (SMPC) strategy is employed at the high-level, the performance of which highly depends on the prediction accuracy of future driving information. To establish a position-dependent stochastic velocity predictor using limited amount of historical data, two improved approaches are developed: 1) Predictor using multiple features; 2) Predictor combining data and model. Simulations are performed to validate the performance of the proposed predictors compared with a benchmark. The results show that the controllers using the proposed predictors can reduce driving cost by 3.36 % and 4.26 %, respectively.

Energy management

Stochastic dynamic programming

Model predictive control

Markov chain

Dual electric machine coupling powertrain

Författare

Wei Du

Xi'an Jiaotong University

Nikolce Murgovski

Chalmers, Elektroteknik, System- och reglerteknik

Fei Ju

Nanjing University of Science and Technology

Jingzhou Gao

Xi'an Jiaotong University

Shengdun Zhao

Xi'an Jiaotong University

IEEE Transactions on Vehicular Technology

0018-9545 (ISSN) 1939-9359 (eISSN)

Vol. 72 4 4294-4307

Ämneskategorier

Beräkningsmatematik

Transportteknik och logistik

Annan elektroteknik och elektronik

DOI

10.1109/TVT.2022.3225161

Mer information

Senast uppdaterat

2023-07-05