Minimax-Bayes Reinforcement Learning
Poster (konferens), 2023

While the Bayesian decision-theoretic framework offers an elegant
solution to the problem of decision making under uncertainty, one
question is how to appropriately select the prior distribution. One
idea is to employ a worst-case prior. However, this is not as easy to
specify in sequential decision making as in simple statistical
estimation problems. This paper studies (sometimes approximate)
minimax-Bayes solutions for various reinforcement learning problems
to gain insights into the properties of the corresponding priors and
policies. We find that while the worst-case prior depends on the
setting, the corresponding minimax policies are more robust than
those that assume a standard (i.e. uniform) prior.

Minimax

reinforcement learning

Markov decision processes

Författare

Thomas Kleine Buening

Universitetet i Oslo

Christos Dimitrakakis

Université de Neuchâtel

Universitetet i Oslo

Chalmers, Data- och informationsteknik, Data Science och AI

Hannes Eriksson

Göteborgs universitet

Zenseact AB

Divya Grover

Chalmers, Data- och informationsteknik, Data Science och AI

Emilio Jorge

Chalmers, Data- och informationsteknik, Data Science och AI

Artificial Intelligence and Statistics, AISTATS 2023
Valencia, Spain,

Ämneskategorier

Beräkningsmatematik

Datavetenskap (datalogi)

Datorseende och robotik (autonoma system)

Mer information

Senast uppdaterat

2023-10-26