Free-space cavity optomechanical systems on a chip with III-V heterostructures
Doktorsavhandling, 2023
This thesis is about the development of a monolithic cavity optomechanical platform using III-V materials which demonstrates a pathway to combine a free-space optical cavity with an integrated mechanical system. To this end, we showcase the design, fabrication and characterization of optomechanical microresonators in AlGaAs/InGaP heterostructures. We demonstrate the enhancement of the out-of-plane reflectivity by reflectance engineering using photonic crystals. We utilize the features of III-V heterostructures by realizing monolithic fully-suspended micromechanical resonator arrays with sub-µm gap in GaAs. This would enable the possibility of enhancing the optomechanical interaction using the concept of multi-element optomechanics. We explore integrated cavity optomechanical systems formed by two photonic crystals reflectors and by a photonic crystal reflector with an integrated distributed Bragg reflector mirror. Furthermore, we propose the use of highly-frequency dependent photonic crystal reflectors in the optomechanical system for realizing photonic bound states in a continuum, which decouple the otherwise coupled cavity loss rates and coupling strength.
The quality factor of the mechanical resonator can be increased by using tensile-strained InGaP which is compatible with AlGaAs heterostructures growth. We determine the material properties of InGaP relevant for mechanical resonators. We demonstrate quality factors of 10^7 in trampoline resonators in InGaP at room temperature. The quality factor is pressure limited and can be enhanced using strain engineering. Free-space integrated multi-element cavity optomechanical systems in III-V heterostructures have the potential to enter the quantum optomechanics regime at room temperature.
Optomechanics
Micromechanical resonators
Cavity Optomechanics
III-V materials
Photonic crystals
Författare
Sushanth Kini
Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi
Suspended photonic crystal membranes in AlGaAs heterostructures for integrated multi-element optomechanics
Applied Physics Letters,;Vol. 116(2020)
Artikel i vetenskaplig tidskrift
Cavity optomechanics with photonic bound states in the continuum
Physical Review Research,;Vol. 3(2021)
Artikel i vetenskaplig tidskrift
S. K. Manjeshwar, A. Ciers, F. Hellman, J. Bläsing, A. Strittmater, and W. Wieczorek, "Micromechanical high-Q trampoline resonators from strained crystalline InGaP for integrated free-space optomechanics", DOI: 10.48550/ARXIV.2211.12469. 48
S. K. Manjeshwar, A. Ciers, J. Monsel, C. Peralle, S. Wang, P. Tassinand W. Wieczorek, "Cavity optomechanics with a chip-based microcavity using a suspended frequency-dependent photonic crystal mirror"
Double layer photonic crystal membranes in AlGaAs heterostructures for integrated cavity optomechanics
Optics InfoBase Conference Papers,;(2021)
Paper i proceeding
Integrated free-space optomechanics with AlGaAs heterostructures
2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021,;(2021)
Paper i proceeding
Nanophotonic Structures for Cavity Optomechanics
2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021,;Vol. June 2021(2021)
Paper i proceeding
The field of optomechanics studies the mutual interaction between light and mechanical motion. The interaction between light and mechanics is enhanced placing the mechanical element inside an optical cavity. Cavity optomechanical devices can measure small displacements and forces with high sensitivity. They are used to measure gravitational waves in LIGO, to cool mechanical systems to their ground state using light and to create hybrid quantum systems that are useful for quantum technology.
This thesis covers experiments showcasing free-space monolithic integrated cavity optomechanical devices in III-V heterostructures. A key advantages of III-V heterostructures is the ability to grow tensile strained layers with precise thickness in a bottom-up grow and conducive for top-down fabrication. This enables the realization of sub-micrometer spaced mechanical resonators and an array of mechanical resonators of high mechanical quality in AlGaAs and InGaP heterostructures. The mechanical resonators can be patterned with a photonic crystal to increase their out-of-plane reflectance. We demonstrate modifications to the canonical optical spring effect due to the presence of the frequency-dependent photonic crystal.
The enhancement of the interaction strength between the light field and mechanical resonator remains a major challenge in optomechanics. In a system with the optomechanical coupling on the level of a single quanta larger than its losses, the interaction between light and mechanics becomes nonlinear. The nonlinear regime is key to explore novel quantum phenomena. The free-space multi-element optomechanical systems developed in this thesis are a promising approach towards the nonlinear regime.
Ickelinjär koppling mellan ljus och mekaniska vibrationer för experiment inom kvantoptik och kvantsensorer
Vetenskapsrådet (VR) (2019-04946), 2020-01-01 -- 2023-12-31.
Kontinuerligt övervakade kvantsensorer: Smarta verktyg och applikationer
Vetenskapsrådet (VR) (2019-00390), 2020-01-01 -- 2022-12-31.
Styrkeområden
Nanovetenskap och nanoteknik
Fundament
Grundläggande vetenskaper
Ämneskategorier (SSIF 2011)
Nanoteknik
Infrastruktur
Chalmers materialanalyslaboratorium
Nanotekniklaboratoriet
ISBN
978-91-7905-792-3
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5258
Utgivare
Chalmers
Kollektorn, lecture room, MC2-huset, Campus Johanneberg
Opponent: Assoc. Prof. Dr. Aurelien Dantan, Aarhus University, Denmark