Highly crystalline selectively oxidized graphene for supercapacitors
Artikel i vetenskaplig tidskrift, 2023

Graphene oxide (GO) is usually regarded as a graphene precursor for scalable synthesis, mainly due to its aqueous processability from introducing oxygen functionalities. Nevertheless, the precise control of graphene's oxidation degree to obtain a good balance between dispersion stability and crystallinity remains challenging. This study describes a simple and practical approach to synthesize a new graphene-based material called selectively oxidized graphene (SOG), which combines the advantages of graphene and GO. SOG shows water stability of −36.2 mV, a C/O ratio of 5.2, and most importantly, a very high crystallinity degree, with an ID/IG of 0.414. The synthesized SOG exhibits an ultra-low optical band gap of 0.04 eV, 75 times lower than GO. Moreover, the electrical resistance, 1.12 KΩ/sq is nine orders of magnitude smaller than GO. Additionally, it also shows promising 3-electrode capacitance with an improvement above 400 % compared to exfoliated graphene. A Swagelok-based supercapacitor was fabricated to analyze the feasibility of SOG for energy storage applications, which exhibited remarkable characteristics such as ∼ 93F g−1 capacitance and ∼ 99.8 % retention after 10,000 cycles. The characteristics of SOG ensure that this new material is promising for applications in organic electronics.

Supercapacitors

Selectively Oxidized Graphene

Crystallinity

2D Materials

Chemical Properties

Författare

Abraham Méndez-Reséndiz

(CIMAV)

Centro de Investigacion en Materiales Avanzados

Ulises Mendez Romero

Centro de Investigacion en Materiales Avanzados

(CIMAV)

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Ricardo Antonio Mendoza-Jiménez

(CIMAV)

Centro de Investigacion en Materiales Avanzados

Birhan Alkadir Abdulahi

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Wollo University

Sergio Alfonso Pérez-García

Centro de Investigacion en Materiales Avanzados

(CIMAV)

Ergang Wang

Chalmers, Kemi och kemiteknik, Tillämpad kemi

L. Licea-Jiménez

(CIMAV)

Centro de Investigacion en Materiales Avanzados

FlatChem

24522627 (eISSN)

Vol. 38 100483

Ämneskategorier

Oorganisk kemi

Materialkemi

Annan kemi

DOI

10.1016/j.flatc.2023.100483

Mer information

Senast uppdaterat

2023-07-28