Chern Forms of Hermitian Metrics with Analytic Singularities on Vector Bundles
Artikel i vetenskaplig tidskrift, 2022

We define Chern and Segre forms, or rather currents, associated with a Griffiths positive singular Hermitian metric h with analytic singularities on a holomorphic vector bundle E. The currents are constructed as pushforwards of generalized Monge-Ampere products on the projectivization of E. The Chern and Segre currents represent the Chern and Segre classes of E, respectively, and coincide with the Chern and Segre forms of E and h where h is smooth. Moreover, our currents coincide with the Chern and Segre forms constructed by the first three authors and Ruppenthal in the cases when these are defined.

Författare

Richard Lärkäng

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Hossein Raufi

Chalmers, Matematiska vetenskaper, Algebra och geometri

Göteborgs universitet

Martin Sera

Kyoto University of Advanced Science

Elizabeth Wulcan

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Indiana University Mathematics Journal

0022-2518 (ISSN)

Vol. 71 5 153-189

Ämneskategorier (SSIF 2011)

Algebra och logik

Geometri

Matematisk analys

DOI

10.1512/iumj.2022.71.8834

Mer information

Senast uppdaterat

2023-02-28