Steel converter slag as an oxygen carrier
Doktorsavhandling, 2023

Thermal conversion of fuels can be used to produce heat and power in addition to chemicals. In order to be aligned with climate targets, it is necessary that such systems do not emit carbon dioxide to the atmosphere. Carbon capture and storage (CCS) can be used together with fuel conversion systems to prevent CO2 from entering the atmosphere. If CCS is used together with biomass-based fuels, it is possible to achieve a net-flow of carbon dioxide out of the atmosphere, so called negative emissions.
Chemical looping technologies for combustion (CLC) and gasification (CLG) are technologies which can be used for heat, power and chemical production with no or low penalties for carbon capture. In any chemical looping applications, a functional oxygen carrier is essential. The oxygen carrier is normally a metal oxide based material that can transport oxygen from one reactor to another. However, when fuel is introduced into the system, ash can react with the oxygen carrier and decrease its operational lifespan, especially reactive ash from biomass and low-grade fuels. Therefore, there is growing interest in low-cost oxygen carriers that can contribute to making the process economically feasible. Low-cost oxygen carriers can be obtained from ores or as byproducts of the steel industry. Of particular interest is steel converter slag, which is also known as Linz-Donawitz (LD) slag. LD slag is generated in significant amounts, contains sufficient amount of iron oxide (that can act as an oxygen carrier) and available at a low cost.
This work presents a comprehensive overview of the chemistry and behavior of LD slag when it is implemented as an oxygen carrier in chemical-looping applications. The material has been investigated in laboratory reactors, in addition to pilot and semi-industrial units, and LD slags interactions with different fuel components, ash, alkali salts, sulfur and tars have been investigated.
It is concluded from this work that LD slag can be viable as material for both CLC and CLG processes with biomass. In contrast to other bed materials, such as silica sand or the commonly investigated iron-based oxygen carrier ilmenite, the slag has limited reactivity with reactive alkali components. This results in more alkali being available in the gas phase, which is beneficial for tar cracking and for the gasification rate of the solid char. The high content of calcium in the LD slag is also favorable in terms of gasification and ash interactions. Calcium oxide catalyzes both the water-gas shift reaction and is catalytic towards tar cracking. A high level of calcium also increases the melting points of both the K-Ca-P and K-Ca-Si matrixes. However, the structural integrity of the material is lower compared to, for example, ilmenite, resulting in more fines being generated during the process. Overall, LD slag is a potential oxygen carrier that is suitable for chemical-looping processes that utilize low-grade fuels.

Steel converter slag

Biomass

Oxygen carrier

LD slag

Oxygen carrier aided combustion

Chemical looping

KB-salen, Kemigården 4, Chalmers.
Opponent: Dr.-Ing. Jochen Ströhle, Energy Systems and Technology (EST), Technische Universität Darmstadt, Germany

Författare

Fredrik Hildor

Chalmers, Kemi och kemiteknik, Energi och material

Steel converter slag as an oxygen carrier in a 12 MWth CFB boiler – Ash interaction and material evolution

International Journal of Greenhouse Gas Control,;Vol. 88(2019)p. 321-331

Artikel i vetenskaplig tidskrift

Steel converter slag as an oxygen carrier for chemical-looping gasification

Fuel Processing Technology,;Vol. 210(2020)

Artikel i vetenskaplig tidskrift

Steel Converter Slag as an Oxygen Carrier-Interaction with Sulfur Dioxide

Energies,;Vol. 15(2022)

Artikel i vetenskaplig tidskrift

Metal impregnation on steel converter slag as an oxygen carrier

Greenhouse Gases: Science and Technology,;(2023)

Artikel i vetenskaplig tidskrift

Hildor, F., Leion, H., Linderholm, C. Effect of weathering on steel converter slag used as an oxygen carrier

Stålindustrin är både en stor utsläppare av koldioxid och producent av slagg och andra restmaterial. LD slagg är ett av dessa material som är svåra att använda till annat, vare sig som material inom byggsektorn eller återvinning inom stålindustrin. Detta gör att det mesta av LD slaggen läggs på hög (ca 300 000 ton per år i Sverige). Då LD slagg fortfarande innehåller en hel del järn, som kan ta upp och sedan avge syre, finns det ett intresse av att undersöka hur detta material skulle kunna fungera som syrebärare.

En syrebärare är ett material som kan transportera syre i en förbränningsprocess. Det kan vara fullständig förbränning när det endast bildas koldioxid och vatten, eller en partiell förbränning där bränslets byggstenar, bland annat vätgas, tas till vara. Partiell förbränning (även kallad förgasning) kan generera byggstenar för tillverkning av material och kemikalier samt bränslen istället för att använda fossila råvaror, så som olja. Fördelen med att använda syrebärare vid förbränning eller förgasning är att effektiviteten kan öka och det kan även främja effektiv koldioxidinfångning. Om bränslets ursprung är biomassa, så kommer dessutom koldioxidinfångningen leda till minskad koldioxid i atmosfären. Då koldioxid är en växthusgas som bidrar till klimatförändringar så är minskad mängd koldioxid i atmosfären ett bra sätt att underlätta samhällets omställning till att bli mer klimatneutralt.

I detta arbete presenteras olika tekniska aspekter på hur LD slagg kan vara lämpad som syrebärare. Materialet har testats i allt från laborativ till semi-industriell skala och både materialets kemiska och fysiska egenskaper har utvärderats. Slutsatsen är att LD slagg skulle kunna vara särskilt lämpat för användning vid förgasning samt avfallsförbränning. Det är alltså möjligt att använda LD slagg som syrebärare för att kunna minska och till och med fånga koldioxid.

The steel industry is both a large emitter of carbon dioxide and produces a significant amount of slags and other by-products. Steel converter slag, also called LD slag, is one material that is hard to utilize within the steel manufacturing process as well as a filler within construction. This results in that most of the LD slag produced are piled up, in Sweden 300 000 ton annually. Since LD slag still contains a significant amount of iron, that can capture and then release oxygen, there is an interest to investigate if LD slag could be utilized as an oxygen carrier.

An oxygen carrier is a material that can transport oxygen in a combustion process. The combustion process could be either fully combusted to carbon dioxide and water, or partial combustion to obtain the building blocks of the fuel, such as hydrogen. Partial combustion (also called gasification) can generate building blocks for the manufacturing of materials and chemicals as well as fuels that are today produced from fossil sources, such as crude oil. The advantages of using oxygen carriers in these processes can be increased efficiency as well as facilitates an opportunity for efficient carbon capture. If biomass is used as the fuel used in the process and carbon capture is implemented, the carbon dioxide concentration in the atmosphere can be decreased. Since carbon dioxide is a greenhouse gas that contributes to climate change, decreased concentration in the atmosphere is beneficial as society converts to being more climate neutral.

In this work different technical aspects of LD slag properties as an oxygen carrier are presented. The material is tested on different scales, from laboratory to semi-industrial scale, and both the chemical and mechanical properties of the material are evaluated. The conclusion is that LD slag could be suitable for gasification processes as well as waste combustion. It is therefore possible to use LD slag as an oxygen carrier to decrease and even capture carbon dioxide.

Ämneskategorier

Mineral- och gruvteknik

Oorganisk kemi

Energisystem

Klimatforskning

ISBN

978-91-7905-790-9

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5256

Utgivare

Chalmers

KB-salen, Kemigården 4, Chalmers.

Online

Opponent: Dr.-Ing. Jochen Ströhle, Energy Systems and Technology (EST), Technische Universität Darmstadt, Germany

Mer information

Senast uppdaterat

2023-03-10