Measurements of industrial emissions of alkenes in Texas using the solar occultation flux method
Artikel i vetenskaplig tidskrift, 2010

[1] Solar occultation flux (SOF) measurements of alkenes have been conducted to identify and quantify the largest emission sources in the vicinity of Houston and in SE Texas during September 2006 as part of the TexAQS 2006 campaign. The measurements have been compared to emission inventories and have been conducted in parallel with airborne plume studies. The SOF measurements show that the hourly gas emissions from the large petrochemical and refining complexes in the Houston Ship Channel area and Mount Belvieu during September 2006 corresponded to 1250 ± 180 kg/h of ethene and 2140 ± 520 kg/h of propene, with an estimated uncertainty of about 35%. This can be compared to the 2006 emission inventory value for ethene and propene of 145 ± 4 and 181 ± 42 kg/h, respectively. On average, for all measurements during the campaign, the discrepancy factor is 10.2(+8,-5) for ethene and 11.7(+7,-4) for propene. The largest emission source was Mount Belvieu, NE of the Houston Ship Channel, with ethene and propene emissions corresponding to 440 ± 130 kg/h and 490 ± 190 kg/h, respectively. Large variability of propene was observed from several petrochemical industries, for which the largest reported emission sources are flares. The SOF alkene emissions agree within 50% with emissions derived from airborne measurements at three different sites. The airborne measurements also provide support to the SOF error budget.

Författare

Johan Mellqvist

Chalmers, Rymd- och geovetenskap, Optisk fjärranalys

J. Samuelsson

Chalmers, Rymd- och geovetenskap, Optisk fjärranalys

John Johansson

Chalmers, Rymd- och geovetenskap, Optisk fjärranalys

Claudia Rivera

Chalmers, Rymd- och geovetenskap, Optisk fjärranalys

B. Lefer

University of Houston

Sergio Alvarez

Baylor University

John Jolly

Texas Commission on Environmental Quality

Journal of Geophysical Research: Atmospheres

2169897X (ISSN) 21698996 (eISSN)

Vol. 115 D7 D00F17

Ämneskategorier

Meteorologi och atmosfärforskning

Astronomi, astrofysik och kosmologi

Miljövetenskap

DOI

10.1029/2008jd011682

Mer information

Senast uppdaterat

2023-03-24