NA61/SHINE online noise filtering using machine learning methods
Paper i proceeding, 2023

The NA61/SHINE is a high-energy physics experiment operating at the SPS accelerator at CERN. The physics program of the experiment was recently extended, requiring a significant upgrade of the detector setup. The main goal of the upgrade is to increase the event flow rate from 80Hz to 1kHz by exchanging the read-out electronics of the NA61/SHINE main tracking detectors (Time-Projection-Chambers - TPCs). As the amount of collected data will increase significantly, a tool for online noise filtering is needed. The standard method is based on the reconstruction of tracks and removal of clusters which do not belong to any particle trajectory. However, this method takes a substantial amount of time and resources. A novel approach based on machine learning methods is presented in this proceedings.

Författare

Anna Kawecka

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Politechnika Warszawska

Wojciech Bryliński

Politechnika Warszawska

Manjunath Omana Kuttan

Frankfurt Institute for Advanced Studies

Johann Wolfgang Goethe Universität Frankfurt am Main

Olena Linnyk

Justus-Liebig-Universität Gießen

Frankfurt Institute for Advanced Studies

Milch&zucker AG

Janik Pawlowski

Philipps-Universität Marburg

Frankfurt Institute for Advanced Studies

Katarzyna Schmidt

University of Silesia in Katowice

Marcin Słodkowski

Politechnika Warszawska

Oskar Wyszyński

Akademia Swietokrzyska im. Jana Kochanowskiego w Kielcach

Jakub Zieliński

Politechnika Warszawska

Journal of Physics: Conference Series

17426588 (ISSN) 17426596 (eISSN)

Vol. 2438 1 012104

20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2021
Daejeon, Virtual, South Korea,

Ämneskategorier

Acceleratorfysik och instrumentering

Subatomär fysik

Annan fysik

DOI

10.1088/1742-6596/2438/1/012104

Mer information

Senast uppdaterat

2023-03-27