An energy-based deep splitting method for the nonlinear filtering problem
Artikel i vetenskaplig tidskrift, 2023

The purpose of this paper is to explore the use of deep learning for the solution of the nonlinear filtering problem. This is achieved by solving the Zakai equation by a deep splitting method, previously developed for approximate solution of (stochastic) partial differential equations. This is combined with an energy-based model for the approximation of functions by a deep neural network. This results in a computationally fast filter that takes observations as input and that does not require re-training when new observations are received. The method is tested on four examples, two linear in one and twenty dimensions and two nonlinear in one dimension. The method shows promising performance when benchmarked against the Kalman filter and the bootstrap particle filter.

stochastic partial differential equation

energy-based method

splitting scheme

deep learning

Zakai equation

Filtering problem

Författare

Kasper Bågmark

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Adam Andersson

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Stig Larsson

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Partial Differential Equations and Applications

26622963 (ISSN) 26622971 (eISSN)

Vol. 4 2 14

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Datorseende och robotik (autonoma system)

Matematisk analys

Annan elektroteknik och elektronik

DOI

10.1007/s42985-023-00231-5

Mer information

Senast uppdaterat

2023-07-24