The impact of fusion-born alpha particles on runaway electron dynamics in ITER disruptions
Artikel i vetenskaplig tidskrift, 2023

In the event of a tokamak disruption in a D-T plasma, fusion-born alpha particles take several milliseconds longer to thermalise than the background. As the damping rates drop drastically following the several orders of magnitudes drop of temperature, Toroidal Alfvén Eigenmodes (TAEs) can be driven by alpha particles in the collapsing plasma before the onset of the current quench. We employ kinetic simulations of the alpha particle distribution and show that the TAEs can reach sufficiently strong saturation amplitudes to cause significant core runaway electron (RE) transport in unmitigated ITER disruptions. As the eigenmodes do not extend to the plasma edge, this effect leads to an increase of the RE plateau current. Mitigation via massive material injection however changes the Alfvén frequency and can lead to mode suppression. A combination of the TAE-caused core RE transport with other perturbation sources could lead to a drop of runaway current in unmitigated disruptions.

runaway electrons

runaway electron mitigation

alpha particles

disruption

Alfvénic instabilities

Författare

A. Lier

Max-Planck-Gesellschaft

G. Papp

Max-Planck-Gesellschaft

Ph Lauber

Max-Planck-Gesellschaft

Istvan Pusztai

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

K. Sarkimaki

Max-Planck-Gesellschaft

Ola Embréus

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Nuclear Fusion

0029-5515 (ISSN) 1741-4326 (eISSN)

Vol. 63 5 056018

Implementation of activities described in the Roadmap to Fusion during Horizon Europe through a joint programme of the members of the EUROfusion consortium

Europeiska kommissionen (EU) (101052200), 2021-01-01 -- 2025-12-31.

Ämneskategorier (SSIF 2011)

Meteorologi och atmosfärforskning

Fusion, plasma och rymdfysik

Den kondenserade materiens fysik

DOI

10.1088/1741-4326/acc4de

Mer information

Senast uppdaterat

2023-05-03