Gradient-Descent Quantum Process Tomography by Learning Kraus Operators
Artikel i vetenskaplig tidskrift, 2023

We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems by learning a process representation using Kraus operators. The Kraus form ensures that the reconstructed process is completely positive. To make the process trace preserving, we use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators. Our ansatz uses a few Kraus operators to avoid direct estimation of large process matrices, e.g., the Choi matrix, for low-rank quantum processes. The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes, but shines by combining the best features of these two methods. Similar to CS (but unlike PLS), GD-QPT can reconstruct a process from just a small number of random measurements, and similar to PLS (but unlike CS) it also works for larger system sizes, up to at least five qubits. We envisage that the data-driven approach of GD-QPT can become a practical tool that greatly reduces the cost and computational effort for QPT in intermediate-scale quantum systems.

Författare

Shahnawaz Ahmed

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Isaac Fernando Quijandria Diaz

Okinawa Institute of Science and Technology Graduate University

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Anton Frisk Kockum

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 130 15 150402

Ämneskategorier

Reglerteknik

Datavetenskap (datalogi)

Datorseende och robotik (autonoma system)

DOI

10.1103/PhysRevLett.130.150402

PubMed

37115870

Mer information

Senast uppdaterat

2023-05-05