Spatial cumulant models enable spatially informed treatment strategies and analysis of local interactions in cancer systems
Artikel i vetenskaplig tidskrift, 2023

Theoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances). We exemplify how SCMs can be used in mathematical oncology by modelling theoretical cancer cell populations comprising interacting growth factor-producing and non-producing cells. To formulate model equations, we use computational tools that enable the generation of STPPs, SCMs and mean-field population models (MFPMs) from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019). To calculate and compare STPP, SCM and MFPM-generated summary statistics, we develop an application-agnostic computational pipeline. Our results demonstrate that SCMs can capture STPP-generated population density dynamics, even when MFPMs fail to do so. From both MFPM and SCM equations, we derive treatment-induced death rates required to achieve non-growing cell populations. When testing these treatment strategies in STPP-generated cell populations, our results demonstrate that SCM-informed strategies outperform MFPM-informed strategies in terms of inhibiting population growths. We thus demonstrate that SCMs provide a new framework in which to study cell-cell interactions, and can be used to describe and perturb STPP-generated cell population dynamics. We, therefore, argue that SCMs can be used to increase IBMs' applicability in cancer research.

Cancer eco-evolution

Spatial moments

Spatio-temporal point processes

Individual-based models

Mathematical oncology

Författare

Sara Hamis

Tampereen Yliopisto

Jyväskylän Yliopisto

Panu Somervuo

Helsingin Yliopisto

J. Arvid Ågren

Cleveland Clinic Foundation

Uppsala universitet

Dagim Shiferaw Tadele

Cleveland Clinic Foundation

Oslo universitetssykehus

Juha Kesseli

Tampereen Yliopisto

J.G. Scott

CASE School of Medicine

Cleveland Clinic Foundation

Matti Nykter

Tampereen Yliopisto

Foundation for the Finnish Cancer Institute

Philip Gerlee

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Dmitri Finkelshtein

Swansea University

Otso Ovaskainen

Norges teknisk-naturvitenskapelige universitet

Jyväskylän Yliopisto

Helsingin Yliopisto

Journal of Mathematical Biology

0303-6812 (ISSN) 1432-1416 (eISSN)

Vol. 86 5 68

Ämneskategorier (SSIF 2011)

Biomedicinsk laboratorievetenskap/teknologi

Bioinformatik (beräkningsbiologi)

Sannolikhetsteori och statistik

DOI

10.1007/s00285-023-01903-x

PubMed

37017776

Mer information

Senast uppdaterat

2023-05-23