DDPC: Automated Data-Driven Power-Performance Controller Design on-the-fly for Latency-sensitive Web Services
Paper i proceeding, 2023
Traditional power reduction techniques such as DVFS or RAPL are challenging to use with web services because they significantly affect the services' latency and throughput. Previous work suggested the use of controllers based on control theory or machine learning to reduce performance degradation under constrained power. However, generating these controllers is challenging as every web service applications running in a data center requires a power-performance model and a fine-tuned controller. In this paper, we present DDPC, a system for autonomic data-driven controller generation for power-latency management. DDPC automates the process of designing and deploying controllers for dynamic power allocation to manage the power-performance trade-offs for latency-sensitive web applications such as a social network. For each application, DDPC uses system identification techniques to learn an adaptive power-performance model that captures the application's power-latency trade-offs which is then used to generate and deploy a Proportional-Integral (PI) power controller with gain-scheduling to dynamically manage the power allocation to the server running application using RAPL. We evaluate DDPC with two realistic latency-sensitive web applications under varying load scenarios. Our results show that DDPC is capable of autonomically generating and deploying controllers within a few minutes reducing the active power allocation of a web-server by more than 50% compared to state-of-the-art techniques while maintaining the latency well below the target of the application.
Web service performance
datacenter
power-management