The vacuum provides quantum advantage to otherwise simulatable architectures
Artikel i vetenskaplig tidskrift, 2023

We consider a computational model composed of ideal Gottesman-Kitaev-Preskill stabilizer states, Gaussian operations - including all rational symplectic operations and all real displacements -, and homodyne measurement. We prove that such architecture is classically efficiently simulatable, by explicitly providing an algorithm to calculate the probability density function of the measurement outcomes of the computation. We also provide a method to sample when the circuits contain conditional operations. This result is based on an extension of the celebrated Gottesman-Knill theorem, via introducing proper stabilizer operators for the code at hand. We conclude that the resource enabling quantum advantage in the universal computational model considered by B.Q. Baragiola et al [Phys. Rev. Lett. 123, 200502 (2019)], composed of a subset of the elements given above augmented with a provision of vacuum states, is indeed the vacuum state.

Computation theory

quantum computing

Quantum theory

Computational efficiency

Författare

Cameron Calcluth

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Alessandro Ferraro

Universita' degli Studi di Milano

Giulia Ferrini

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Physical Review A

24699926 (ISSN) 24699934 (eISSN)

Vol. 107 6 062414

Ämneskategorier

Atom- och molekylfysik och optik

DOI

10.48550/arXiv.2205.09781

Mer information

Senast uppdaterat

2024-01-03