Nonlinear semigroups for nonlocal conservation laws
Artikel i vetenskaplig tidskrift, 2023

We investigate a class of nonlocal conservation laws in several space dimensions, where the continuum average of weighted nonlocal interactions are considered over a finite horizon. We establish well-posedness for a broad class of flux functions and initial data via semigroup theory in Banach spaces and, in particular, via the celebrated Crandall–Liggett Theorem. We also show that the unique mild solution satisfies a Kružkov-type nonlocal entropy inequality. Similarly to the local case, we demonstrate an efficient way of proving various desirable qualitative properties of the unique solution.

Nonlinear semigroup

Conservation law

Nonlocal differential equation

Författare

Mihaly Kovacs

Chalmers, Matematiska vetenskaper

Budapesti Muszaki es Gazdasagtudomanyi Egyetem

Mihály A. Vághy

Pázmány Péter Katolikus Egyetem

Partial Differential Equations and Applications

26622963 (ISSN) 26622971 (eISSN)

Vol. 4 4 32

Icke-lokala deterministiska och stokastiska differentialekvationer: analys och numerik

Vetenskapsrådet (VR) (2017-04274), 2019-01-01 -- 2021-12-31.

Ämneskategorier

Matematisk analys

DOI

10.1007/s42985-023-00249-9

Mer information

Senast uppdaterat

2023-07-21