The quantum approximate optimization algorithm: optimization problems and implementations
Doktorsavhandling, 2023
This thesis also includes a demonstration of the practical implementation of QAOA on a superconducting quantum computer, demonstrating empirical proof of QAOA's functionality. It also investigates running QAOA using noise-biased qubits, namely cat qubits, which exhibit resilience to certain types of errors.
This thesis also explores novel multi-qubit gates obtained from the simultaneous application of two controlled-Z gates on current quantum hardware, leading to the efficient creation of large entangled states.
Lastly, the thesis delves into virtual distillation, an error-mitigation protocol, and assesses its performance under various types of errors.
Overall, this thesis validates the promise of QAOA in solving real-world optimization problems while also offering insights into error mitigation.
Quantum approximate optimization algorithm
quantum computing
error mitigation
cat qubits
Författare
Pontus Vikstål
Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik
Applying the Quantum Approximate Optimization Algorithm to the Tail-Assignment Problem
Physical Review Applied,;Vol. 14(2020)
Artikel i vetenskaplig tidskrift
Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm
Physical Review Applied,;Vol. 14(2020)
Artikel i vetenskaplig tidskrift
Fast Multiqubit Gates through Simultaneous Two-Qubit Gates
PRX Quantum,;Vol. 2(2021)
Artikel i vetenskaplig tidskrift
Vikstål, P. Ferrini, G. Puri, S. Study of noise in virtual distillation circuits for quantum error mitigation
Vikstål, P. García-Álvarez, L. Puri, S. Ferrini, G. Quantum Approximate Optimization Algorithm with Cat Qubits
However, on our journey to build large-scale error-corrected quantum computers, we encounter quantum devices with a few hundred noisy qubits. This poses the question: can we do something useful with these devices? In this thesis, we aim to delve into the current state of quantum algorithms for near-term quantum devices and try to shed light on the potential of quantum computing to tackle complex optimization problems.
Styrkeområden
Nanovetenskap och nanoteknik
Ämneskategorier
Beräkningsmatematik
Fysik
ISBN
978-91-7905-893-7
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5359
Utgivare
Chalmers
Kollektorn, Kemivägen 9
Opponent: Prof. Sophia Economou, Virginia Tech, United States