Hyperuniformity and non-hyperuniformity of quasicrystals
Artikel i vetenskaplig tidskrift, 2023

We develop a general framework to study hyperuniformity of various mathematical models of quasicrystals. Using this framework we provide examples of non-hyperuniform quasicrystals which unlike previous examples are not limit-quasiperiodic. Some of these examples are even anti-hyperuniform or have a positive asymptotic number variance. On the other hand we establish hyperuniformity for a large class of mathematical quasicrystals in Euclidean spaces of arbitrary dimension. For certain models of quasicrystals we moreover establish that hyperuniformity holds for a generic choice of the underlying parameters. For quasicrystals arising from the cut-and-project method we conclude that their hyperuniformity depends on subtle diophantine properties of the underlying lattice and window and is by no means automatic.

Författare

Michael Björklund

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Tobias Hartnick

Karlsruher Institut für Technologie (KIT)

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Vol. In Press

Ämneskategorier

Beräkningsmatematik

DOI

10.1007/s00208-023-02647-1

Mer information

Senast uppdaterat

2023-08-10