Deep Learning For Model-Based Multi-Object Tracking
Doktorsavhandling, 2023

Visa mer

multi-object smoothing

multi-object tracking

Deep learning

multi-object tracking performance measures

Författare

Juliano Pinto

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Inkluderade delarbeten

Next Generation Multitarget Trackers: Random Finite Set Methods vs Transformer-based Deep Learning

Proceedings of 2021 IEEE 24th International Conference on Information Fusion, FUSION 2021,;(2021)p. 1059-1066

Paper i proceeding

An Uncertainty-Aware Performance Measure for Multi-Object Tracking

IEEE Signal Processing Letters,;Vol. 28(2021)p. 1689-1693

Artikel i vetenskaplig tidskrift

Deep Learning for Model-Based Multi-Object Tracking

IEEE Transactions on Aerospace and Electronic Systems,;Vol. 59(2023)p. 7363-7379

Artikel i vetenskaplig tidskrift

J. Pinto, G. Hess, W. Ljungbergh, Y. Xia, L. Svensson, and H. Wymeersch - Transformer-based Multi-object Smoothing with Decoupled Data Association and Smoothing

Manuskript

Populärvetenskaplig beskrivning

Visa mer

Forskningsprojekt

6G Artificial Intelligence Radar

Chalmers AI-forskningscentrum (CHAIR), 2021-05-01 -- 2023-04-30.

Kategorisering

Infrastruktur

C3SE (-2020, Chalmers Centre for Computational Science and Engineering)

Ämneskategorier (SSIF 2011)

Signalbehandling

Identifikatorer

ISBN

978-91-7905-924-8

Övrigt

Serie

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5390

Utgivare

Chalmers

Examination

2023-09-29 10:00 -- 13:00

HC4

Online

Opponent: Simon Maskell

Mer information

Senast uppdaterat

2023-09-12