Turbulent burning velocity and thermodiffusive instability of premixed flames
Artikel i vetenskaplig tidskrift, 2023

Reported in the paper are results of unsteady three-dimensional direct numerical simulations of laminar and turbulent, lean hydrogen-air, complex-chemistry flames propagating in forced turbulence in a box. To explore the eventual influence of thermodiffusive instability of laminar flames on turbulent burning velocity, (i) a critical length scale $\Lambda_{n}$ that bounds regimes of unstable and stable laminar combustion is numerically determined by gradually decreasing the width $\Lambda$ of computational domain until a stable laminar flame is obtained and (ii) simulations of turbulent flames are performed by varying the width from $\Lambda<\Lambda_{n}$ (in this case, the instability is suppressed) to $\Lambda>\Lambda_{n}$ (in this case, the instability may grow). Moreover, simulations are performed either using mixture-averaged transport properties (low Lewis number flames) or setting diffusivities of all species equal to heat diffusivity of the mixture (equidiffusive flames), with all other things being equal. Obtained results show a significant increase in turbulent burning velocity $U_T$ when the boundary $\Lambda=\Lambda_{n}$ is crossed in weak turbulence, but almost equal values of $U_T$ are computed at $\Lambda<\Lambda_{n}$ and $\Lambda>\Lambda_{n}$ in moderately turbulent flames characterized by Karlovitz number equal to 3.4 or larger. These results imply that thermo-diffusive instability of laminar premixed flames substantially affects burning velocity in weak turbulence only, in line with a simple criterion proposed by Chomiak and Lipatnikov (Phys. Rev. E 107, 015102, 2023).

burning velocity

flame speed

flame instability

turbulent combustion

Författare

HsuChew Lee

Southern University of Science and Technology

B. Wu

Southern University of Science and Technology

Peng Dai

Southern University of Science and Technology

Minping Wan

Southern University of Science and Technology

Andrei Lipatnikov

Energiomvandling och framdrivningssystem

Physical Review E

24700045 (ISSN) 24700053 (eISSN)

Vol. 108 3 035101

Styrkeområden

Transport

Fundament

Grundläggande vetenskaper

Ämneskategorier (SSIF 2011)

Strömningsmekanik och akustik

DOI

10.1103/PhysRevE.108.035101

Mer information

Senast uppdaterat

2023-10-13