Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms Regularization Framework
Paper i proceeding, 2023

We develop a novel theoretical framework for understating Optimal Transport (OT) schemes respecting a class structure. For this purpose, we propose a convex OT program with a sum-of-norms regularization term, which provably recovers the underlying class structure under geometric assumptions. Furthermore, we derive an accelerated proximal algorithm with a closed-form projection and proximal operator scheme, thereby affording a more scalable algorithm for computing optimal transport plans. We provide a novel argument for the uniqueness of the optimum even in the absence of strong convexity. Our experiments show that the new regularizer not only results in a better preservation of the class structure in the data but also yields additional robustness to the data geometry, compared to previous regularizers.

Författare

Arman Rahbar

Chalmers, Data- och informationsteknik, Data Science och AI

Ashkan Panahi

Chalmers, Data- och informationsteknik, Data Science och AI

Morteza Haghir Chehreghani

Chalmers, Data- och informationsteknik, Data Science och AI

Devdatt Dubhashi

Chalmers, Data- och informationsteknik, Data Science och AI

Hamid Krim

North Carolina State University

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022

26403498 (eISSN)

Vol. 202 28549-28577

40th International Conference on Machine Learning, ICML 2023
Honolulu, USA,

Ämneskategorier

Reglerteknik

Mer information

Senast uppdaterat

2023-11-01