Dataset on aquatic ecotoxicity predictions of 2697 chemicals, using three quantitative structure-activity relationship platforms
Artikel i vetenskaplig tidskrift, 2023

Empirical and in silico data on the aquatic ecotoxicology of 2697 organic chemicals were collected in order to compile a dataset for assessing the predictive power of current Quantitative Structure Activity Relationship (QSAR) models and software platforms. This document presents the dataset and the data pipeline for its creation. Empirical data were collected from the US EPA ECOTOX Knowledgebase (ECOTOX) and the EFSA (European Food Safety Authority) report “Completion of data entry of pesticide ecotoxicology Tier 1 study endpoints in a XML schema – database”. Only data for OECD recommended algae, daphnia and fish species were retained. QSAR toxicity predictions were calculated for each chemical and each of six endpoints using ECOSAR, VEGA and the Toxicity Estimation Software Tool (T.E.S.T.) platforms. Finally, the dataset was amended with SMILES, InChIKey, pKa and logP collected from webchem and PubChem.

Quantitative structure-activity relationship

Chemical toxicity

ECOSAR

Toxicity estimation software tool

VEGA

Författare

Patrik Svedberg

Göteborgs universitet

Pedro A. Inostroza

RWTH Aachen University

Göteborgs universitet

Mikael Gustavsson

Göteborgs universitet

Erik Kristiansson

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Francis Spilsbury

Göteborgs universitet

Thomas Backhaus

RWTH Aachen University

Göteborgs universitet

Data in Brief

23523409 (eISSN)

Vol. 51 109719

Ämneskategorier

Biokemi och molekylärbiologi

Ekologi

Farmakologi och toxikologi

Miljövetenskap

DOI

10.1016/j.dib.2023.109719

PubMed

37965605

Mer information

Senast uppdaterat

2023-11-10