Using Machine Learning for formulating new wall functions for Detached Eddy Simulation
Paper i proceeding, 2023
The trained ML model is saved to disk and it is subsequently uploaded into the Python CFD code pyCALC-LES. IDDES is carried out on coarse wall-function meshes. The wall-shear stress (using the local y^+ and u) is predicted using the developed ML model. The test cases are channel flow at Re_tau=16 000 and flat-plate boundary layer at Re_theta=2550.
Machine Learning
wall functions
IDDES
Large eddy simultiona
Författare
Lars Davidson
Chalmers, Mekanik och maritima vetenskaper, Strömningslära
ERCOFTAC symposium on Engineering, Turbulence, Modelling and Measurements (ETMM14)
Ämneskategorier
Teoretisk kemi
Strömningsmekanik och akustik