Using Machine Learning for formulating new wall functions for Detached Eddy Simulation
Övrigt konferensbidrag, 2023
The trained ML model is saved to disk and it is subsequently uploaded into the Python CFD code pyCALC-LES. IDDES is carried out on coarse wall-function meshes. The wall-shear stress (using the local y^+ and u) is predicted using the developed ML model. The test cases are channel flow at Re_tau=16 000 and flat-plate boundary layer at Re_theta=2550.
Large eddy simultiona
wall functions
Machine Learning
IDDES
Författare
Lars Davidson
Chalmers, Mekanik och maritima vetenskaper, Strömningslära
Barcelona, Spain,
Ämneskategorier
Teoretisk kemi
Strömningsmekanik och akustik