climateBUG: A data-driven framework for analyzing bank reporting through a climate lens
Artikel i vetenskaplig tidskrift, 2024

This paper applies computational linguistics learning methods to the banking industry and climate change fields. We introduce our data-driven framework, climateBUG, with the aim of detecting latent information about how banks discuss their activities related to climate change using natural language processing (NLP). This framework consists of an ingestion pipeline, a configurable database, and a set of API’s. In addition, climateBUG offers two standalone components, namely a unique annotated corpus of approximately 1.1M statements from EU banks’ annual and sustainability reporting and a deep learning model adapted to the semantics of the corpus. When benchmarking on classification performance, our model outperforms other models with similar scopes due to its stronger domain relevance. We also provide examples of how the framework can be applied from a user perspective.

natural language processing

deep learning

Annual reporting

sustainability

climate change

Finance & accounting

Författare

Yinan Yu

Chalmers, Data- och informationsteknik, Funktionell programmering

Samuel Scheidegger

Asymptotic AB

Jasmine Elliott

Göteborgs universitet

Åsa Löfgren

Göteborgs universitet

Expert Systems with Applications

0957-4174 (ISSN)

Vol. 239 122162

Ämneskategorier

Annan data- och informationsvetenskap

Språkteknologi (språkvetenskaplig databehandling)

Nationalekonomi

Datavetenskap (datalogi)

Drivkrafter

Hållbar utveckling

DOI

10.1016/j.eswa.2023.122162

Mer information

Senast uppdaterat

2023-11-29