Exploiting the Potential of Flexible Processing Units
Paper i proceeding, 2023
In this work, we take one example of such xPU, and analyze the aspects which have not yet been fully addressed, showing that there is more potential to be exploited. By understanding the required memory patterns, we can achieve up to 72% speedup gains compared to using the memory support optimized for a different functionality. Furthermore, we propose an in-depth analysis of the different functionalities provided by the xPU. We then leverage the insights obtained from this analysis by providing a mechanism that selects the right functionality, maximizing hardware utilization.
Systolic Array
Vector Unit
GEMM
DNN
Scientific Computing
Flexible Processing Unit
Författare
Mateo Vázquez Maceiras
Chalmers, Data- och informationsteknik, Datorteknik
Muhammad Waqar Azhar
Chalmers, Data- och informationsteknik, Datorteknik
Pedro Petersen Moura Trancoso
Chalmers, Data- och informationsteknik, Datorteknik
Proceedings - Symposium on Computer Architecture and High Performance Computing
15506533 (ISSN)
34-45979-8-3503-0549-4 (ISBN)
Porto Alegre, Brazil,
Very Efficient Deep Learning in IOT (VEDLIoT)
Europeiska kommissionen (EU) (EC/H2020/957197), 2020-11-01 -- 2023-10-31.
European, extendable, energy-efficient, energetic, embedded, extensible, Processor Ecosystem (eProcessor)
Europeiska kommissionen (EU) (EC/H2020/956702), 2021-01-01 -- 2024-06-30.
Ämneskategorier
Datorteknik
Datavetenskap (datalogi)
Datorsystem
Drivkrafter
Hållbar utveckling
DOI
10.1109/SBAC-PAD59825.2023.00013
ISBN
9798350305487