Machine Learning Approach to the Topological Optimization of Metasurfaces
Paper i proceeding, 2022

We present our work on using machine learning for the topological optimization of metasurfaces. First, we show that deep neural networks can be used to predict the scattering properties of metasurfaces. Subsequently, we demonstrate the inverse design of free-form metasurfaces using a modified CGAN machine learning method that balances the accuracy of desired optical properties with experimental feasibility. Our method allows constraints imposed by the nanofabrication to be integrated in the optimization.

Författare

Timo Gahlmann

Chalmers, Fysik, Kondenserad materie- och materialteori

Philippe Tassin

Chalmers, Fysik, Kondenserad materie- och materialteori

International Conference on Metamaterials, Photonic Crystals and Plasmonics

24291390 (eISSN)

541-542

12th International Conference on Metamaterials, Photonic Crystals and Plasmonics, META 2022
Torremolinos, Spain,

Utveckling av nya fotoniska metaytor med hjälp av artificiell intelligens

Vetenskapsrådet (VR) (2020-05284), 2020-12-01 -- 2024-11-30.

Ämneskategorier (SSIF 2011)

Språkteknologi (språkvetenskaplig databehandling)

Beräkningsmatematik

Annan fysik

Den kondenserade materiens fysik

Mer information

Senast uppdaterat

2024-01-10