Different Ways of Describing Plasma Dynamics
Kapitel i bok, 2012

In order to realize which approximations that are made in the descriptions of plasmas that we generally use, it is instructive to start from the most general description which includes all individual particles and their correlations in the six dimensional phase space (r,v). I the absence of particle sources or sinks we must have a continuity equation for the delta function density N:$$ N(X,t) = \sum\limits_{{i = 1}}^N {(X - {{X}_i}} (t))\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,X = ({\mathbf{r}},{\mathbf{v}}) $$ $$ \frac{\partial }{{\partial t}}N + \sum\limits_i {\frac{\partial }{{\partial {{r}_i}}}} \left({N\frac{{\partial {{r}_i}}}{{\partial t}}} \right) + \sum\limits_i {\frac{\partial }{{\partial {{\hbox{v}}_i}}}} \left({N\frac{{\partial {{\text{v}}_i}}}{{\partial t}}} \right) = 0, $$

Dimensional Phase Space

Vlasov Equation

Drift Frequency

Fluid Equation

Particle Distribution Function

Författare

Jan Weiland

EURATOM-VR

Chalmers, Fysik

Springer Series on Atomic, Optical, and Plasma Physics

16155653 (ISSN) 21976791 (eISSN)

Vol. 71 11-26

Ämneskategorier

Fusion, plasma och rymdfysik

DOI

10.1007/978-1-4614-3743-7_2

Mer information

Senast uppdaterat

2024-07-11