GIVA: Interaction-aware trajectory prediction based on GRU-Improved VGG-Attention Mechanism model for autonomous vehicles
Artikel i vetenskaplig tidskrift, 2023

Predicting future trajectories is crucial for autonomous vehicles, as accurate predictions enhance safety and inform subsequent decision-making and planning modules. This is however a challenging task due to the complex interactions between surrounding vehicles. Existing methods struggled to extract deep representations and often overlook spatial dependence. To address this problem, this paper introduces GIVA, an interaction-aware trajectory prediction method based on the Gated Recurrent Unit (GRU)-Improved Visual Geometry Group (VGG)-Attention Mechanism model. GIVA first encodes the historical trajectories of the target vehicle and its surrounding vehicles using a GRU Encoder. Next, an Interaction Module, which combines the Improved VGG Pooling Module and the Attention Mechanism Pooling Module, effectively captures spatial interaction features between vehicles. The Improved VGG Pooling Module extracts more detailed and effective interaction information, while the Attention Mechanism Pooling Module emphasizes the importance of surrounding vehicles for the target vehicle’s future trajectory. Lastly, the dynamic encoding feature of the target vehicle and the fused interaction feature are concatenated and input into a GRU Decoder to generate the future trajectory. Experiments on the public Next Generation Simulation (NGSIM) dataset showcase the effectiveness of GIVA compared to existing prediction approaches, demonstrating its potential for improving autonomous vehicle performance.

interaction aware

trajectory prediction

Autonomous vehicle

Encoder-Interaction-Decoder framework

GRU-Improved VGG-Attention Mechanism

Författare

Zhiwei Meng

Chalmers, Arkitektur och samhällsbyggnadsteknik, Geologi och geoteknik

Jilin University

Rui He

Jilin University

Jiaming Wu

Chalmers, Arkitektur och samhällsbyggnadsteknik, Geologi och geoteknik

Sumin Zhang

Jilin University

Ri Bai

Jilin University

Yongshuai Zhi

Jilin University

Proceedings of the Institution of Mechanical Engineers. Part D, Transport engineering

09544070 (ISSN) 20412991 (eISSN)

Vol. In Press

Säkerhetstestning av intelligenta uppkopplade fordon i mixade trafikmiljöer

VINNOVA (Vinnova2019-03418), 2020-08-01 -- 2023-08-31.

Ämneskategorier

Farkostteknik

Robotteknik och automation

DOI

10.1177/09544070231207669

Mer information

Senast uppdaterat

2024-01-08