Ion transport, mechanical properties and relaxation dynamics in structural battery electrolytes consisting of an imidazolium protic ionic liquid confined into a methacrylate polymer
Artikel i vetenskaplig tidskrift, 2023

The effect of confining a liquid electrolyte into a polymer matrix was studied by means of Raman spectroscopy, differential scanning calorimetry, temperature-modulated differential scanning calorimetry, dielectric spectroscopy, and rheology. The polymer matrix was obtained from thermal curing ethoxylated bisphenol A dimethacrylate while the liquid electrolyte consisted of a protic ionic liquid based on the ethyl-imidazolium cation [C2HIm] and the bis(trifluoromethanesulfonyl)imide [TFSI] anion, doped with LiTFSI salt. We report that the confined liquid phase exhibits the following characteristics: (i) a distinctly reduced degree of crystallinity; (ii) a broader distribution of relaxation times; (iii) reduced dielectric strength; (iv) a reduced cooperativity length scale at the liquid-to-glass transition temperature (Tg); and (v) up-speeded local Tg-related ion dynamics. The latter is indicative of weak interfacial interactions between the two nanophases and a strong geometrical confinement effect, which dictates both the ion dynamics and the coupled structural relaxation, hence lowering Tg by about 4 K. We also find that at room temperature, the ionic conductivity of the structural electrolyte achieves a value of 0.13 mS/cm, one decade lower than the corresponding bulk electrolyte. Three mobile ions (Im+, TFSI-, and Li+) contribute to the measured ionic conductivity, implicitly reducing the Li+ transference number. In addition, we report that the investigated solid polymer electrolytes exhibit the shear modulus needed for transferring the mechanical load to the carbon fibers in a structural battery. Based on these findings, we conclude that optimized microphase-separated polymer electrolytes, including a protic ionic liquid, are promising for the development of
novel multifunctional electrolytes for use in future structural batteries.

ionic conductivity

Structural battery electrolyte

confinement

relaxation dynamics

protic ionic liquid

Författare

Achilleas Pipertzis

Chalmers, Fysik, Nano- och biofysik

Nicole Abdou

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Johanna Xu

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Leif Asp

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Anna Martinelli

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Jan Swenson

Chalmers, Fysik, Nano- och biofysik

Energy Materials: Materials Science and Engineering for Energy Systems

1748-9237 (ISSN)

Vol. 3 300050

Ämneskategorier

Polymerkemi

Oorganisk kemi

Fysikalisk kemi

Materialkemi

Den kondenserade materiens fysik

Drivkrafter

Hållbar utveckling

Styrkeområden

Energi

Materialvetenskap

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.20517/energymater.2023.49

Mer information

Senast uppdaterat

2024-01-12