Numerical modeling of time dependent Diffusive Shock Acceleration
Artikel i vetenskaplig tidskrift, 2024

Motivated by cosmic ray (CR) re-acceleration at a potential Galactic Wind Termination Shock (GWTS), we present a numerical model for time-dependent Diffusive Shock Acceleration (DSA). We use the stochastic differential equation solver (DiffusionSDE) of the cosmic ray propagation framework CRPropa3.2 with two modifications: An importance sampling module is introduced to improve statistics at high energies in order to keep the simulation time short. An adaptive time step is implemented in the DiffusionSDE module. This ensures to efficiently meet constraints on the time and diffusion step, which is crucial to obtain the correct shock spectra. The time evolution of the spectrum at a one-dimensional planar shock is verified against the solution obtained by the grid-based solver VLUGR3 for both energy-independent and energy-dependent diffusion. We show that the injection of pre-accelerated particles can lead to a broken power law spectrum in momentum if the incoming spectrum of CRs is harder than the re-accelerated spectrum. If the injected spectrum is steeper, the shock spectrum dominates at all energies. We finally apply the developed model to the GWTS by considering a spherically symmetric shock, a spiral Galactic magnetic field, and anisotropic diffusion. The time-dependent spectrum at the shock is modeled as a basis for further studies.

magnetic fields

particle acceleration

ultra high energy cosmic rays

cosmic ray theory

Författare

S. Aerdker

Ruhr-Universität Bochum

RAPP Center

L. Merten

Ruhr-Universität Bochum

RAPP Center

Julia Tjus

RAPP Center

Ruhr-Universität Bochum

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

D. Walter

Ruhr-Universität Bochum

RAPP Center

F. Effenberger

Ruhr-Universität Bochum

RAPP Center

H. Fichtner

Ruhr-Universität Bochum

RAPP Center

Journal of Cosmology and Astroparticle Physics

14757516 (eISSN)

Vol. 2024 1 068

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Astronomi, astrofysik och kosmologi

DOI

10.1088/1475-7516/2024/01/068

Mer information

Senast uppdaterat

2025-12-02