Improved Tactical Decision Making and Control Architecture for Autonomous Truck in SUMO Using Reinforcement Learning
Paper i proceeding, 2023

We employ Reinforcement Learning (RL) techniques with improved state and action spaces for tactical decision making in an autonomous truck. Specifically, we implement Adaptive Cruise Control (ACC) and lane change maneuvers for the autonomous truck in a highway scenario. We show the results obtained using three reinforcement learning algorithms: Deep Q-Network (DQN), Advantage Actor-Critic (A2C) and Proximal Policy Optimization (PPO). Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions between the RL agent and the low-level controllers based on physical models. Furthermore, we design a realistic reward function based on the Total Cost of Operation (TCOP) of the truck to guide the RL agent towards optimal driving strategy.

Traffic Simulations

Total Cost of Operation

Reinforcement Learning

Autonomous Trucks

Tactical Decision making

Författare

Deepthi Pathare

Volvo Group

Chalmers, Data- och informationsteknik, Data Science och AI

Leo Laine

Chalmers, Mekanik och maritima vetenskaper

Morteza Haghir Chehreghani

Chalmers, Data- och informationsteknik, Data Science och AI

Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023

5321-5329
9798350324457 (ISBN)

2023 IEEE International Conference on Big Data, BigData 2023
Sorrento, Italy,

Ämneskategorier (SSIF 2011)

Datavetenskap (datalogi)

Datorsystem

DOI

10.1109/BigData59044.2023.10386803

Mer information

Senast uppdaterat

2024-02-26