Sequentially Guided MCMC Proposals for Synthetic Likelihoods and Correlated Synthetic Likelihoods
Artikel i vetenskaplig tidskrift, 2023

Synthetic likelihood (SL) is a strategy for parameter inference when the likelihood function is analytically or computationally intractable. In SL, the likelihood function of the data is replaced by a multivariate Gaussian density over summary statistics of the data. SL requires simulation of many replicate datasets at every parameter value considered by a sampling algorithm, such as Markov chain Monte Carlo (MCMC), making the method computationally-intensive. We propose two strategies to alleviate the computational burden. First, we introduce an algorithm producing a proposal distribution that is sequentially tuned and made conditional to data, thus it rapidly guides the proposed parameters towards high posterior density regions. In our experiments, a small number of iterations of our algorithm is enough to rapidly locate high density regions, which we use to initialize one or several chains that make use of off-the-shelf adaptive MCMC methods. Our "guided" approach can also be potentially used with MCMC samplers for approximate Bayesian computation (ABC). Second, we exploit strategies borrowed from the correlated pseudo-marginal MCMC literature, to improve the chains mixing in a SL framework. Moreover, our methods enable inference for challenging case studies, when the posterior is multimodal and when the chain is initialised in low posterior probability regions of the parameter space, where standard samplers failed. To illustrate the advantages stemming from our framework we consider five benchmark examples, including estimation of parameters for a cosmological model and a stochastic model with highly non-Gaussian summary statistics.

intractable likelihoods

Bayesian inference

likelihood-free

cosmological parameters

Författare

Umberto Picchini

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Umberto Simola

Helsingin Yliopisto

Jukka Corander

Universitetet i Oslo

Bayesian Analysis

1936-0975 (ISSN) 1931-6690 (eISSN)

Vol. 18 4 1099-1129

Djupinlärning och likelihood-fri Bayesiansk inferens för stokastiska modeller

Chalmers AI-forskningscentrum (CHAIR), 2020-01-01 -- 2024-12-31.

Vetenskapsrådet (VR) (2019-03924), 2020-01-01 -- 2023-12-31.

Ämneskategorier

Sannolikhetsteori och statistik

DOI

10.1214/22-BA1305

Mer information

Senast uppdaterat

2024-03-15