Umberto Picchini
Jag är intresserad av statistisk inferens för stokastisk modellering, och särskilt Bayesianska beräkningsmetoder. Till exempel är jag intresserad av MCMC, sekvensiella Monte Carlo-metoder (partikelfilter) och i synnerhet "likelihood-fria" metoder, såsom Approximate Bayesian Computation (ABC). Jag har ett särskilt intresse för stokastisk modellering (till exempel stokastiska differentialekvationer) och tillämpningar inom biomedicin. Länk till min personliga sida.
Visar 12 publikationer
Towards data-conditional simulation for ABC inference in stochastic differential equations
Guided sequential ABC schemes for intractable Bayesian models
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models
Sequentially Guided MCMC Proposals for Synthetic Likelihoods and Correlated Synthetic Likelihoods
Statistical modeling of diabetic neuropathy: Exploring the dynamics of nerve mortality
Scalable and flexible inference framework for stochastic dynamic single-cell models
Sequential Neural Posterior and Likelihood Approximation
Accelerating delayed-acceptance Markov chain Monte Carlo algorithms
Ladda ner publikationslistor
Du kan ladda ner denna lista till din dator.
Filtrera och ladda ner publikationslista
Som inloggad användare hittar du ytterligare funktioner i MyResearch.
Du kan även exportera direkt till Zotero eller Mendeley genom webbläsarplugins. Dessa hittar du här:
Zotero Connector
Mendeley Web Importer
Tjänsten SwePub erbjuder uttag av Researchs listor i andra format, till exempel kan du få uttag av publikationer enligt Harvard och Oxford i .RIS, BibTex och RefWorks-format.
Visar 2 forskningsprojekt
Djupinlärning och likelihood-fri Bayesiansk inferens för stokastiska modeller
Statistisk inferensteori och stokastisk modellering av proteinveckning