THE LAPLACE SPECTRUM ON CONFORMALLY COMPACT MANIFOLDS
Artikel i vetenskaplig tidskrift, 2024

We consider the spectrum of the Laplace operator acting on L-p over a conformally compact manifold for 1 < p < infinity. We prove that for p not equal 2 this spectrum always contains an open region of the complex plane. We further show that the spectrum is contained within a certain parabolic region of the complex plane. These regions depend on the value of p, the dimension of the manifold, and the values of the sectional curvatures approaching the boundary.

Författare

Nelia Charalambous

University of Cyprus

Julie Rowlett

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Transactions of the American Mathematical Society

0002-9947 (ISSN) 1088-6850 (eISSN)

Vol. 377 5 3373-3395

Geometrisk analys och tillämpningar i mikrobekologi

Vetenskapsrådet (VR) (2018-03873), 2019-01-01 -- 2022-12-31.

Ämneskategorier

Matematik

DOI

10.1090/tran/9107

Mer information

Senast uppdaterat

2024-05-25