calorine: A Python package for constructing and sampling neuroevolution potential models
Artikel i vetenskaplig tidskrift, 2024

Molecular dynamics (MD) simulations are a key tool in computational chemistry, physics, and materials science, aiding the understanding of microscopic processes but also guiding the development of novel materials. A MD simulation requires a model for the interatomic interactions. To this end, one traditionally often uses empirical interatomic potentials or force fields, which are fast but inaccurate, or ab-initio methods based on electronic structure theory such as density functional theory, which are accurate but computationally very expensive (Müser et al., 2023). Machine-learned interatomic potentials (MLIPs) have in recent years emerged as an alternative to these approaches, combining the speed of heuristic force fields with the accuracy of ab-initio techniques (Unke et al., 2021). Neuroevolution potentials (NEPs), implemented in the GPUMD package, in particular, are a highly accurate and efficient class of MLIPs (Fan et al., 2021, 2022; Fan, 2022). NEP models have already been used to study a variety of properties in a range of materials, with recent examples including radiation damage in tungsten (Liu et al., 2023), phase transitions (Fransson, Wiktor, et al., 2023) and dynamics of halide perovskites (Fransson, Rosander, et al., 2023) as well as thermal transport in two-dimensional materials (Sha et al., 2023). Here, we present calorine, a Python package that simplifies the construction, analysis and use of NEP models via GPUMD.

machine learned interaction potential

machine learning

GPUMD

molecular dynamics

Författare

Eric Lindgren

Chalmers, Fysik, Kondenserad materie- och materialteori

Magnus Rahm

Chalmers, Fysik, Kondenserad materie- och materialteori

Erik Fransson

Chalmers, Fysik, Kondenserad materie- och materialteori

Fredrik Eriksson

Chalmers, Fysik, Kondenserad materie- och materialteori

Nicklas Österbacka

Chalmers, Fysik, Kondenserad materie- och materialteori

Zheyong Fan

Bohai University

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

Journal of Open Source Software

2475-9066 (ISSN)

Vol. 9 95 6264-6264

Sveriges Neutronforskarskola - SwedNESS

Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2017-01-01 -- 2020-12-31.

Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2016-07-01 -- 2021-06-30.

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Fundament

Grundläggande vetenskaper

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Ämneskategorier

Sannolikhetsteori och statistik

DOI

10.21105/joss.06264

Relaterade dataset

calorine - A Python library for building and sampling NEP models via the GPUMD package [dataset]

DOI: 10.5281/zenodo.10723374

Mer information

Senast uppdaterat

2024-03-25