Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits
Artikel i vetenskaplig tidskrift, 2024

Innovations in resistive switching devices constitute a core objective for the development of ultralow-power computing devices. Forming-free resistive switching is a type of resistive switching that eliminates the need for an initial high voltage for the formation of conductive filaments and offers promising opportunities to overcome the limitations of traditional resistive switching devices. Here, we demonstrate mixed charge state oxygen vacancy-engineered electroforming-free resistive switching in NiFe2O4 (NFO) thin films, fabricated as asymmetric Ti/NFO/Pt heterostructures, for the first time. Using pulsed laser deposition in a controlled oxygen atmosphere, we tune the oxygen vacancies together with the cationic valence state in the nickel ferrite phase, with the latter directly affecting the charge state of the oxygen vacancies. The structural integrity and chemical composition of the films are confirmed by X-ray diffraction and hard X-ray photoelectron spectroscopy, respectively. Electrical transport studies reveal that resistive switching characteristics in the films can be significantly altered by tuning the amount and charge state of the oxygen vacancy concentration during the deposition of the films. The resistive switching mechanism is seen to depend upon the migration of both singly and doubly charged oxygen vacancies formed as a result of changes in the nickel valence state and the consequent formation/rupture of conducting filaments in the switching layer. This is supported by the existence of an optimum oxygen vacancy concentration for efficient low-voltage resistive switching, below or above which the switching process is inhibited. Along with the filamentary switching mechanism, the Ti top electrode also enhances the resistive switching performance due to interfacial effects. Time-resolved measurements on the devices display both long- and short-term potentiation in the optimized vacancy-engineered NFO resistive switches, ideal for solid-state synapses achieved in a single system. Our work on correlated oxide forming-free resistive switches holds significant potential for CMOS-compatible low-power, nonvolatile resistive memory and neuromorphic circuits.

spinel ferrite

thin films

oxygen vacancy

long-term potentiation

resistive switching

short-term potentiation

pulsed laser deposition

Författare

R. Rajesh Kumar

Uppsala universitet

Alexei Kalaboukhov

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Yi Chen Weng

Uppsala universitet

K. N. Rathod

Uppsala universitet

Ted Johansson

Uppsala universitet

Andreas Lindblad

Uppsala universitet

Venkata Kamalakar Mutta

Uppsala universitet

Tapati Sarkar

Uppsala universitet

ACS Applied Materials & Interfaces

1944-8244 (ISSN) 1944-8252 (eISSN)

Vol. In Press

Ämneskategorier

Energisystem

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1021/acsami.4c01501

PubMed

38579143

Mer information

Senast uppdaterat

2024-04-19