Stroke Prehospital Decision Support Systems Based on Artificial Intelligence: Grey Literature Scoping Review
Paper i proceeding, 2024

Stroke is a leading cause of mortality and disability worldwide. Therefore, there is a growing interest in prehospital point-of-care stroke clinical decision support systems (CDSSs), which with improved precision can identify stroke and decrease the time to optimal treatment, thereby improving clinical outcomes. Artificial intelligence (AI) may be a route to improve CDSSs for clinical benefit. Deploying AI in the area of prehospital stroke care is still in its infancy. There are several existing systematic and scoping reviews summarizing the progress of AI methods for stroke assessment. None of these reviews include grey literature, which could be a valuable source of information, especially when analysing future research and development directions. This paper aims to use grey literature to investigate stroke assessment CDSSs based on AI. The study adheres to PRISMA guidelines and presents seven records showcasing promising technologies. These records included three clinical trials, two smartphone applications, one master thesis and one PhD dissertation, which identify electroencephalogram (EEG), video analysis and voice and facial recognition as potential data sources for early stroke identification. The integration of these technologies may offer the prospect of faster and more accurate CDSSs in the future.

Machine Learning(ML)

Stroke.

Grey Literature

Prehospital Care

Artificial Intelligence (AI)

Clinical Decision Support Systems (CDSSs)

Författare

Hoor Jalo

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Eunji Lee

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Mattias Seth

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Anna Bakidou

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Minna Pikkarainen

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Katarina Jood

Göteborgs universitet

Bengt-Arne Sjöqvist

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Stefan Candefjord

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies

2184-4305 (ISSN)

Vol. 2 458-465
978-989-758-688-0 (ISBN)

17th International Joint Conference on Biomedical Engineering Systems and Technologies
Rome, Italy,

Ämneskategorier (SSIF 2011)

Medicinteknik

Neurologi

Styrkeområden

Hälsa och teknik

DOI

10.5220/0012380400003657

Mer information

Senast uppdaterat

2025-01-09