Fatigue performance and damage characterisation of ultra-thin tow-based discontinuous tape composites
Artikel i vetenskaplig tidskrift, 2024

Tow-based discontinuous composites are an attractive alternative material to conventional continuous composites as they offer in-plane isotropy, enhanced manufacturability allowing to achieve complex 3D shapes with high curvatures and local reinforcement in critical areas, while also maintaining high strength and stiffness, therefore expanding the design space significantly. In addition, the use of ultra-thin tapes and optimised manufacturing methods can increase the mechanical properties even further and change the damage mechanisms. Fatigue, however, could be a limiting design factor, as the fatigue behaviour of these materials has not been fully characterised. This work presents a complete study on the fatigue response of ultra-thin tow-based discontinuous composites: fatigue S–N curves are measured, and the damage and failure mechanisms are characterised utilising optical and scanning electron microscopy. Finally, a critical interpretation of the results is also presented by comparing the performance of ultra-thin tow-based discontinuous composites against other similar fibre reinforced composites and metals. It is shown that the optimised manufacturing methods combined with low tape thickness leads to enhanced quasi-isotropic fatigue performance. In addition, the fatigue limit was raised significantly compared to other discontinuous composites, and the tow-based discontinuous composites outperformed their metal counterparts when the results were normalised with density.

Damage characterisation

Fatigue loading

Carbon fibre

Fractography

Tow-based discontinuous composites

Författare

Ioannis Katsivalis

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Monica Norrby

Kungliga Tekniska Högskolan (KTH)

Florence Moreau

Oxeon AB

Erik Kullgren

Elitkomposit AB

Soraia Pimenta

Imperial College London

Dan Zenkert

Kungliga Tekniska Högskolan (KTH)

Leif Asp

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Composites Part B: Engineering

1359-8368 (ISSN)

Vol. 281 111553

Integrerade lättviktstankar för lagring av flytande väte (VOLANT)

Chalmers (Dnr C 2021-0040), 2022-01-01 -- 2023-12-31.

Högtöjningskomposit för utmattningståliga fotproteser

VINNOVA (2021-04048), 2021-12-12 -- 2023-11-30.

Drivkrafter

Hållbar utveckling

Innovation och entreprenörskap

Styrkeområden

Transport

Ämneskategorier

Teknisk mekanik

Farkostteknik

Kompositmaterial och -teknik

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1016/j.compositesb.2024.111553

Mer information

Senast uppdaterat

2024-05-28