Toward Real Chemical Accuracy on Current Quantum Hardware Through the Transcorrelated Method
Artikel i vetenskaplig tidskrift, 2024

Quantum computing is emerging as a new computational paradigm with the potential to transform several research fields including quantum chemistry. However, current hardware limitations (including limited coherence times, gate infidelities, and connectivity) hamper the implementation of most quantum algorithms and call for more noise-resilient solutions. We propose an explicitly correlated Ansatz based on the transcorrelated (TC) approach to target these major roadblocks directly. This method transfers, without any approximation, correlations from the wave function directly into the Hamiltonian, thus reducing the resources needed to achieve accurate results with noisy quantum devices. We show that the TC approach allows for shallower circuits and improves the convergence toward the complete basis set limit, providing energies within chemical accuracy to experiment with smaller basis sets and, thus, fewer qubits. We demonstrate our method by computing bond lengths, dissociation energies, and vibrational frequencies close to experimental results for the hydrogen dimer and lithium hydride using two and four qubits, respectively. To demonstrate our approach’s current and near-term potential, we perform hardware experiments, where our results confirm that the TC method paves the way toward accurate quantum chemistry calculations already on today’s quantum hardware.

Författare

Werner Barucha-Dobrautz

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Igor O. Sokolov

IBM Research

Ke Liao

Max-Planck-Gesellschaft

Pablo López Ríos

Max-Planck-Gesellschaft

Martin Rahm

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Ali Alavi

University of Cambridge

Max-Planck-Gesellschaft

Ivano Tavernelli

IBM Research

Journal of Chemical Theory and Computation

1549-9618 (ISSN) 1549-9626 (eISSN)

Vol. 20 10 4146-4160

QC-SQUARED

Europeiska kommissionen (EU) (EC/HE/101062864), 2022-01-07 -- 2025-06-30.

Wallenberg Centre for Quantum Technology (WACQT)

Knut och Alice Wallenbergs Stiftelse (KAW 2017.0449, KAW2021.0009, KAW2022.0006), 2018-01-01 -- 2030-03-31.

Ämneskategorier (SSIF 2011)

Annan fysik

Teoretisk kemi

Den kondenserade materiens fysik

DOI

10.1021/acs.jctc.4c00070

PubMed

38723159

Mer information

Senast uppdaterat

2025-01-14