Reduced Order Models For Exhaust AfterTreatment Systems - Coupling Modeling, Simulations and Chemometrics
Doktorsavhandling, 2024
Accurate models that capture the spatial and temporal variations of the flow distribution in EATS, specifically during cold start conditions and real driving emissions (RDE) tests, are essential to comply with stringent emission standards. 1D and 3D-computational fluid dynamics (3D-CFD) models are used to predict the conversion of species at the exit of EATS. While 1D models are robust, they lack accuracy, whereas, 3D-CFD models offer higher accuracy, but require significant computational resources. This study addresses these challenges primarily through Computational Fluid Dynamics (CFD) simulations and proposes a methodology for developing reduced-order models.
Firstly, characterizing and quantifying flow distribution in EATS under transient conditions with realistic geometry is performed using non-reactive simulations. Flow uniformity index is used to characterize the extent of variation of the flow parameters in any catalyst plane. In addition to the uniformity index, contours and histograms are employed to demonstrate the non-uniform flow field.
The effect of inlet pulsations on the mixed cup conversion at exit of catalyst is studied using transient reactive simulations. Four transient inlet profiles, viz., constant flowrate, sinusoidal, rectangular, and triangular pulse profiles, are chosen to describe the inlet pulsations. The results show that the fluctuations and pulsations in the incoming flow to a monolithic reactor in an aftertreatment system, affect both the transient response of the reactor as well as its time-averaged performance. The method of specifying the inlet boundary conditions also influences the solutions.
A methodology for developing a reduced-order model by combining physics-based CFD solutions with multivariate data analysis methods is proposed. This method is demonstrated by combining CFD solutions of transient reactive simulations on a diesel oxidation catalyst with chemometric techniques. Performance evaluations validate the efficacy of the multi-channel model over single-channel models. Computational efforts for creating the multichannel model are comparable to single-channel models, when utilizing available CFD data and coupling chemometrics analysis. This enables rigorous control applications with improved accuracy. The methodology can be extended to real-world emissions aftertreatment systems with complex geometries.
Further, predictions of species conversions in systems with flow maldistribution are made by performing steady state reactive 3D-CFD simulations and mapping the same with 1D-SCM. A pseudo-channel is envisaged that provides the same species conversion as the 3D-CFD, by formulating an objective function, which is the difference of species conversions of 3D-CFD and 1D-SCM. The error of the objective function is minimized by iteratively varying the velocity that will provide the same conversion in a 1D-SCM. The pseudo-channel model outputs agree closely with the CFD results in various steady-state and transient test cases.
Detached eddy simulations were carried out under nonreactive conditions on the geometry with bends to confirm the validity of RANS simulations, as RANS simulations are computationally more effective than DES. Flow uniformity indices were of the same order in both cases, however, DES showed fluctuations.
This thesis aims at developing reduced order models combining CFD simulations and regression and chemometric techniques. It also highlights the limitations of a single channel model in a realistic geometry case. The thesis also attempts to predict species conversion of transient reactive simulations, from the solution of steady state reactive simulations, as the former is computationally more expensive than the latter. The developed pseudo-channel model and multi-channel model can be used for realtime monitoring and control applications. These two methodologies require a computational load comparable to that of 1D models. Validation of these models using EATS experiments under transient conditions is recommended for future research.
Transient
Uniformity index
Multi-channel model
Catalyst
CFD Simulations
Single channel model
Reactive flows
Nonlinear least squares optimization
Weighted least squares
Exhaust AfterTreatment Systems
Principal component Analysis
D-Optimal design
Flow maldistribution
Författare
Pratheeba Chanda Nagarajan
Chalmers, Mekanik och maritima vetenskaper, Energiomvandling och framdrivningssystem
Transient Flow Uniformity Evolution in Realistic Exhaust Gas Aftertreatment Systems using 3D-CFD
Emission Control Science and Technology,;Vol. 8(2022)p. 154-170
Artikel i vetenskaplig tidskrift
Numerical Assessment of Flow Pulsation Effects on Reactant Conversion in Automotive Monolithic Reactors
Catalysts,;Vol. 12(2022)
Artikel i vetenskaplig tidskrift
Turbulent uniformity fluctuations in automotive catalysts – A RANS vs DES assessment
Results in Engineering,;Vol. 16(2022)
Artikel i vetenskaplig tidskrift
P. Chanda Nagarajan, H. Ström, J. Sjöblom, Methodology for reduced-order multi-channel modeling of a catalytic converter
P. Chanda Nagarajan, H. Ström, J. Sjöblom, A reduced-order pseudo-channel model accounting for flow maldistribution in automotive catalysis
Användningen av kolväte-baserade bränslen i fordon ger upphov till skadliga utsläpp, såsom kolmonoxid, kväveoxider, oförbrända kolväten och partiklar. Dessa utsläpp utgör risker för människors hälsa och miljön. För att uppfylla stränga utsläppsregler och omvandla skadliga gaser till ofarliga, används katalysatorer – vanligtvis i form av monolitreaktorer. Dessa reaktorer består av hundratals parallella kanaler med väggar belagda med katalytiskt material (t ex ädelmetaller). Komplexa fysikaliska processer, inklusive adsorption, kemiska reaktioner och desorption, äger rum i sådana reaktorer. Matematiska modeller används för att förutsäga gasblandningens sammansättning vid katalysatorns utlopp.
De två huvudkategorierna av modeller är 1D-modeller (som fokuserar på enskilda kanaler) och 3D-modeller (ofta baserade på computational fluid dynamics, CFD). Även om 1D-modeller är robusta saknar de precision i system med ojämn flödesfördelning. Avgassystem med böjar och konor introducerar flödesvariationer vid inloppet, vilket påverkar katalysatorns prestanda och utsläppsreduktion. Flödesfördelningen i katalytiska reaktorer specificeras med ett ‘flödesjämnhets-index’, som kan användas för att karaktärisera fördelningen av temperatur- och hastighetsfält vid katalysatorns utlopp.
Även om 3D-CFD-modeller ger exakta förutsägelser av gasernas koncentration är de beräkningsmässigt dyra. Målet med min avhandling är att utveckla reducerade modeller som kan tillämpas på komplexa fenomen som ojämn flödesfördelning och vid kallstart. Jag har använt CFD för att karaktärisera fördelningen av både flöde och temperatur för att sedan visa hur temperatuen har en annorlunda och långsammare dynamik jämfört med flödesfördelningen. Jag har analyserat tidskonstanterna vid sk stegsvar och kunna visa att katalysatorns termiska massa är ofta starkt begränsande.
Slutligen, Genom att tillämpa kemometriska tekniker på 3D-CFD-lösningar skapas flerkanalsmodeller som överträffar konventionella 1D-modeller En alternativ metod med endast en ”pseudo-kanal” som kalibrerats mot 3D CFD data från endast reaktiva simuleringar (steady state) ger även den mycket god prestanda. Dessa modeller kan därmed användas för systemoptimering, realtidsövervakning och styrning av avgasreningssystem.
Drivkrafter
Hållbar utveckling
Styrkeområden
Transport
Energi
Ämneskategorier
Annan teknik
Kemiteknik
Annan kemi
Reglerteknik
ISBN
978-91-8103-053-2
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5511
Utgivare
Chalmers
HA1, Horsalsvagen, Johannaberg Campus, Chalmers University of Technology
Opponent: Prof. Ivan Cornejo Garcia, Universidad Técnica Federico Santa María, Chile.