Entropy for Monge-Ampere Measures in the Prescribed Singularities Setting
Artikel i vetenskaplig tidskrift, 2024

In this note, we generalize the notion of entropy for potentials in a relative full Monge-Ampere mass E(X, theta, phi), for a model potential phi. We then investigate stability properties of this condition with respect to blow-ups and perturbation of the cohomology class. We also prove a Moser-Trudinger type inequality with general weight and we show that functions with finite entropy lie in a relative energy class E (n/n-1) (X, theta, phi) (provided n > 1), while they have the same singularities of phi when n = 1.

entropy

Kahler manifolds

big classes

Monge-Ampe`re energy

Författare

Eleonora Di Nezza

Sorbonne Université

Université de recherche Paris Sciences et Lettres

Stefano Trapani

Universita degli Studi di Roma Tor Vergata

Antonio Trusiani

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

18150659 (eISSN)

Vol. 20 039

Ämneskategorier

Geometri

DOI

10.3842/SIGMA.2024.039

Mer information

Senast uppdaterat

2024-10-28