Machine learning surrogates for the optimization of curing ovens
Artikel i vetenskaplig tidskrift, 2024

We investigate how to set the inlet temperature, and arrange a set of vehicle parts inside a paint curing oven, so as to maximize a non -convex, non-linear objective function. Standard methods for solving this kind of problem require a large number of objective function evaluations, each of which depends on a computationally expensive (minutes/hours) CFD simulation. We replace the CFD solver with machine learning surrogates that can approximate the data required for an objective function evaluation extremely quickly (sub -second). We develop i) simulation surrogates that produce simulations that are structurally identical to their CFD-generated counterparts, and ii) objective function surrogates that learn an objective function directly. We consider elementary learners (simple neural networks, non-linear regressions, Gaussian processes) and develop various techniques to use and combine them to solve single- and multi -criteria optimization problems. We combine our surrogates in a configuration resembling a stack ensemble, and use it to solve the optimization problem at greatly reduced computational cost. We are thus able to explore multiple local maxima, and obtain solutions with higher objective function values than with traditional methods. Finally, we propose an approach that allows practitioners to throttle the computational effort until a satisfactory solution quality is achieved.

Non-convex optimization

CFD simulations

Machine learning

Supervised learning

Linear regression

Surrogate modelling

Metamodelling

Design optimization

Response surface modelling

Deep learning

Neural networks

Multi-criteria optimization

Non-linear regression

Gaussian processes

Författare

Quentin Parsons

Fraunhofer Institute for Industrial Mathematics

Dimitri Nowak

Fraunhofer Institute for Industrial Mathematics

Michael Bortz

Fraunhofer Institute for Industrial Mathematics

Tomas Johnson

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Andreas Mark

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Fredrik Edelvik

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Engineering Applications of Artificial Intelligence

0952-1976 (ISSN)

Vol. 133 Part C 108086

Styrkeområden

Produktion

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Strömningsmekanik och akustik

Datavetenskap (datalogi)

DOI

10.1016/j.engappai.2024.108086

Mer information

Senast uppdaterat

2025-01-08