Energy norm error estimates and convergence analysis for a stabilized Maxwell's equations in conductive media
Artikel i vetenskaplig tidskrift, 2024

The aim of this article is to investigate the well-posedness, stability and convergence of solutions to the time-dependent Maxwell's equations for electric field in conductive media in continuous and discrete settings. The situation we consider would represent a physical problem where a subdomain is emerged in a homogeneous medium, characterized by constant dielectric permittivity and conductivity functions. It is well known that in these homogeneous regions the solution to the Maxwell's equations also solves the wave equation which makes calculations very efficient. In this way our problem can be considered as a coupling problem for which we derive stability and convergence analysis. A number of numerical examples validate theoretical convergence rates of the proposed stabilized explicit finite element scheme.

convergence analysis

65N30

energy error estimate

5Q61

65N15

finite element method

65N21

stability

a priori error analysis

Maxwell’s equation

Författare

Eric Lindström

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Larisa Beilina

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Applications of Mathematics

0862-7940 (ISSN) 15729109 (eISSN)

Vol. 69 4 415-436

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Matematisk analys

Drivkrafter

Innovation och entreprenörskap

Styrkeområden

Hälsa och teknik

DOI

10.21136/AM.2024.0248-23

Mer information

Senast uppdaterat

2024-08-24