Nanoalignment by critical Casimir torques
Artikel i vetenskaplig tidskrift, 2024

The manipulation of microscopic objects requires precise and controllable forces and torques. Recent advances have led to the use of critical Casimir forces as a powerful tool, which can be finely tuned through the temperature of the environment and the chemical properties of the involved objects. For example, these forces have been used to self-organize ensembles of particles and to counteract stiction caused by Casimir-Liftshitz forces. However, until now, the potential of critical Casimir torques has been largely unexplored. Here, we demonstrate that critical Casimir torques can efficiently control the alignment of microscopic objects on nanopatterned substrates. We show experimentally and corroborate with theoretical calculations and Monte Carlo simulations that circular patterns on a substrate can stabilize the position and orientation of microscopic disks. By making the patterns elliptical, such microdisks can be subject to a torque which flips them upright while simultaneously allowing for more accurate control of the microdisk position. More complex patterns can selectively trap 2D-chiral particles and generate particle motion similar to non-equilibrium Brownian ratchets. These findings provide new opportunities for nanotechnological applications requiring precise positioning and orientation of microscopic objects.

Författare

Gan Wang

Göteborgs universitet

Piotr Nowakowski

Ruder Boskovic Institute

Max-Planck-Gesellschaft

Universität Stuttgart

Nima Farahmand Bafi

Polish Academy of Sciences

Universität Stuttgart

Max-Planck-Gesellschaft

Benjamin Midtvedt

Göteborgs universitet

Falko Schmidt

Eidgenössische Technische Hochschule Zürich (ETH)

Agnese Callegari

Göteborgs universitet

Ruggero Verre

Chalmers, Mikroteknologi och nanovetenskap, Nanotekniklaboratoriet

Mikael Käll

Chalmers, Fysik, Nano- och biofysik

S. Dietrich

Max-Planck-Gesellschaft

Universität Stuttgart

Svyatoslav Kondrat

Universität Stuttgart

Polish Academy of Sciences

Max-Planck-Gesellschaft

Giovanni Volpe

Göteborgs universitet

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 15 1 5086

Ämneskategorier

Reglerteknik

DOI

10.1038/s41467-024-49220-1

Mer information

Senast uppdaterat

2024-07-01