Influence of carbonisation temperatures on multifunctional properties of carbon fibres for structural battery applications
Artikel i vetenskaplig tidskrift, 2024

Carbon fibres are multifunctional materials considered for the realisation of structural battery electrodes. Processing conditions affect the carbonaceous microstructure of carbon fibres. The microstructure dictates the fibre's mechanical properties, i.e. modulus and strength, as well as its electrochemical capacity. Here, carbon fibre processing conditions are investigated to identify the effect of carbonisation temperature on carbon fibre multifunctionality. Different thermal conditions during carbonisation are considered, while keeping the precursor material, applied tension, and oxidation temperature constant. The carbonaceous microstructure of fibres is investigated via wide-angle x-ray scattering (WAXS) and transmission electron microscopy (TEM) analyses to determine the effect of the carbonisation temperature. Mechanical and electrochemical tests are performed to characterise carbon fibre multifunctionality with respect to mechanical and electrochemical performance. A moderate trade-off between mechanical and electrochemical performance is demonstrated, where the elastic modulus and strength decrease and the electrochemical capacity increase with reduced carbonisation temperature. Here, for the studied temperature interval, the elastic modulus and strength is found to drop up to 7% with a 15% increase in capacity. Thus, fibres customised for targeted multifunctionality within a limited design space can be realised by careful selection of the processing conditions in conventional carbon fibre manufacture.

Electrochemical Characterisation

Carbon fibre

Multifunctional Materials

Mechanical Characterisation

Biomimetics

Författare

Ruben Tavano

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Johanna Xu

2D-Tech

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Claudia Creighton

Deakin University

Fang Liu

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Bhagya Dharmasiri

Deakin University

Luke Henderson

Deakin University

Leif Asp

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

2D-Tech

Batteries and Supercaps

25666223 (eISSN)

Vol. 7 e202400110

Strukturella batterikompositer för viktlös energilagring

Rymdstyrelsen (2020-00256), 2021-01-01 -- 2023-12-31.

Multifunktionella kolfibrer för strukturella batterielektroder

Office of Naval Research (N62909-22-1-2037), 2022-06-01 -- 2025-05-31.

2D material-baserad teknologi för industriella applikationer (2D-TECH)

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

Drivkrafter

Hållbar utveckling

Ämneskategorier

Materialteknik

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1002/batt.202400110

Mer information

Senast uppdaterat

2024-09-26