Scenario-Tree Model Predictive Control for Vehicle Interactions in Highway Setting
Artikel i vetenskaplig tidskrift, 2024

In this letter, we present a modeling and control design framework for modeling and influencing the drivers' decisions in highway scenarios using one or more vehicles as actuators. Our approach relies on a driver's decision-making model that is used to design a scenario-tree model predictive controller, which calculates acceleration and lane change commands for a set of controlled vehicles. We illustrate our modeling and control framework in a two-lane highway example, with two vehicles, one autonomous and one human-driven. Results from numerical simulations demonstrate how our approach can efficiently influence the lane changes of one vehicle using the other as a control actuator.

Markovian models

model predictive control

Highway traffic

Författare

Elisa Gaetan

Politecnico di Bari

Universita Degli Studi Di Modena E Reggio Emilia

Laura Giarré

Universita Degli Studi Di Modena E Reggio Emilia

Paolo Falcone

Universita Degli Studi Di Modena E Reggio Emilia

Chalmers, Elektroteknik, System- och reglerteknik

IEEE Control Systems Letters

24751456 (eISSN)

Vol. 8 1162-1167

Ämneskategorier

Farkostteknik

Reglerteknik

DOI

10.1109/LCSYS.2024.3408035

Mer information

Senast uppdaterat

2024-07-29