Resource analysis of quantum algorithms for coarse-grained protein folding models
Artikel i vetenskaplig tidskrift, 2024

Protein folding processes are a vital aspect of molecular biology that is hard to simulate with conventional computers. Quantum algorithms have been proven superior for certain problems and may help tackle this complex life science challenge. We analyze the resource requirements for simulating simplified yet computationally challenging protein folding models on a quantum computer, assessing the feasibility of these existing approaches in the current and near-future technological landscape. We calculate the minimum number of qubits, interactions, and two-qubit gates necessary to build a heuristic quantum algorithm with the specific information of a folding problem. Particularly, we focus on the resources needed to build quantum operations based on the Hamiltonian linked to the protein folding models for a given amino acid count. Such operations are a fundamental component of these quantum algorithms, guiding the evolution of the quantum state for efficient computations. Specifically, we study coarse-grained folding models on the lattice and the fixed backbone side-chain conformation model and assess their compatibility with the constraints of existing quantum hardware given different bit encodings. We conclude that the number of qubits required falls within current technological capabilities. However, the limiting factor is the high number of interactions in the Hamiltonian, resulting in a quantum gate count unavailable today.

Författare

Hanna Linn

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Isak Brundin

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Laura Garcia Alvarez

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Göran Johansson

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Physical Review Research

26431564 (ISSN)

Vol. 6 3 033112

Ämneskategorier

Data- och informationsvetenskap

Fysik

DOI

10.1103/PhysRevResearch.6.033112

Mer information

Senast uppdaterat

2024-08-06