On Finite Parts of Divergent Complex Geometric Integrals and Their Dependence on a Choice of Hermitian Metric
Artikel i vetenskaplig tidskrift, 2024

Let X be a reduced complex space of pure dimension. We consider divergent integrals of certain forms on X that are singular along a subvariety defined by the zero set of a holomorphic section of some holomorphic vector bundle E→X. Given a choice of Hermitian metric on E we define a finite part of the divergent integral. Our main result is an explicit formula for the dependence on the choice of metric of the finite part.

Regularization

Current

Finite part of divergent integral

32C30

Meromorphic continuation

32A27

Författare

Ludvig Svensson

Chalmers, Matematiska vetenskaper, Algebra och geometri

Journal of Geometric Analysis

1050-6926 (ISSN)

Vol. 34 11 325

Ämneskategorier (SSIF 2011)

Matematisk analys

DOI

10.1007/s12220-024-01773-9

Mer information

Senast uppdaterat

2024-09-13