Model Predictive Parkour Control of a Monoped Hopper in Dynamically Changing Environments
Artikel i vetenskaplig tidskrift, 2024

A great advantage of legged robots is their ability to operate on particularly difficult and obstructed terrain, which demands dynamic, robust, and precise movements. The study of obstacle courses provides invaluable insights into the challenges legged robots face, offering a controlled environment to assess and enhance their capabilities. Traversing it with a one-legged hopper introduces intricate challenges, such as planning over contacts and dealing with flight phases, which necessitates a sophisticated controller. A novel model predictive parkour controller is introduced, that finds an optimal path through a real-Time changing obstacle course with mixed integer motion planning. The execution of this optimized path is then achieved through a state machine employing a PD control scheme with feedforward torques, ensuring robust and accurate performance.

parkour control

legged locomotion

Hopping

model predictive control

Författare

Maximilian Albracht

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

Deutsches Forschungszentrum fur Kunstliche Intelligenz

Shivesh Kumar

Deutsches Forschungszentrum fur Kunstliche Intelligenz

Chalmers, Mekanik och maritima vetenskaper, Dynamik

Shubham Vyas

Universität Bremen

Deutsches Forschungszentrum fur Kunstliche Intelligenz

Frank Kirchner

Universität Bremen

Deutsches Forschungszentrum fur Kunstliche Intelligenz

IEEE Robotics and Automation Letters

23773766 (eISSN)

Vol. 9 10 8507-8514

Ämneskategorier

Robotteknik och automation

DOI

10.1109/LRA.2024.3445668

Mer information

Senast uppdaterat

2024-09-13