The innovative potential of Generative Pre-trained Transformers (GPTS) for quality inspections in Swedish construction projects
Paper i proceeding, 2024

Approaching quality inspection plans in Swedish construction projects as mere checklists and minimizing the clients’ involvement, can reduce their value. We propose improving this process through a cloud service concept for clients, designers, and contractors, utilizing generative pre-trained transformer (GPT) AI. Methodologically, we synthesize literature insights on GPT uses for construction, and empirical inquiries on developing a quality self-inspection service. We posit that through this service, project knowledge, known quality defects and lessons-learned from previous cases can be better accessed and shared – potentially leading to time savings, suggesting best practices, and improving the collaboration among clients, designers, and contractors.

cloud service

Quality control

self-checks

Swedish construction projects

generative pre-trained transformer (GPT)

Författare

Dimosthenis Kifokeris

Chalmers, Arkitektur och samhällsbyggnadsteknik, Byggnadsdesign

Jan Kohvakka

Incoord Installationscoordinator

Christian Koch

Syddansk Universitet

Högskolan i Halmstad

Donia Aslanzadeh

Robert Dicksons stiftelse

Proceedings of the European Conference on Computing in Construction

26841150 (eISSN)

Vol. 2024 829-836 231
978-9-083451-30-5 (ISBN)

European Conference on Computing in Construction, EC3 2024
Chania, Greece,

En molntjänst med GPT-baserat projektstöd för kvalitetsäkringi byggprojekt för beställare, projektörer och entreprenörer

Formas (2023-00111), 2023-05-01 -- 2024-08-31.

Ämneskategorier (SSIF 2011)

Byggproduktion

DOI

10.35490/EC3.2024.231

Mer information

Senast uppdaterat

2024-09-20